z^2+(3+i)z+3i=0

Simple and best practice solution for z^2+(3+i)z+3i=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for z^2+(3+i)z+3i=0 equation:


Simplifying
z2 + (3 + i) * z + 3i = 0

Reorder the terms for easier multiplication:
z2 + z(3 + i) + 3i = 0
z2 + (3 * z + i * z) + 3i = 0

Reorder the terms:
z2 + (iz + 3z) + 3i = 0
z2 + (iz + 3z) + 3i = 0

Reorder the terms:
3i + iz + 3z + z2 = 0

Solving
3i + iz + 3z + z2 = 0

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Add '-3z' to each side of the equation.
3i + iz + 3z + -3z + z2 = 0 + -3z

Combine like terms: 3z + -3z = 0
3i + iz + 0 + z2 = 0 + -3z
3i + iz + z2 = 0 + -3z
Remove the zero:
3i + iz + z2 = -3z

Add '-1z2' to each side of the equation.
3i + iz + z2 + -1z2 = -3z + -1z2

Combine like terms: z2 + -1z2 = 0
3i + iz + 0 = -3z + -1z2
3i + iz = -3z + -1z2

Reorder the terms:
3i + iz + 3z + z2 = -3z + 3z + -1z2 + z2

Combine like terms: -3z + 3z = 0
3i + iz + 3z + z2 = 0 + -1z2 + z2
3i + iz + 3z + z2 = -1z2 + z2

Combine like terms: -1z2 + z2 = 0
3i + iz + 3z + z2 = 0

The solution to this equation could not be determined.

See similar equations:

| lnx+ln(x+7)=0 | | -18-4x=-6x+14 | | -8(8+4x)=23-3x | | X+x+2=654 | | 5x-20=3x-60 | | 17(t-3)+4=7(3t+3)-12 | | X-6=4x+2 | | -7+n=-4-8(-6+2n) | | 0.01=x(1-x) | | x+(0.01x-1)=1 | | 2(x+7)=-36 | | 2xy=0.02 | | 3x-4y=-6 | | 25y^2+16=0 | | 6(x+1)+3(2-x)=2(2x-1)-(4-x) | | 3*0-4y=-6 | | p^2-50=0 | | 0.01=(1-x)x | | (5x-1)+(13-x)=24 | | x^2+5=9-6x+x^2 | | 4d^2+81=0 | | -3x=2y | | y-6=0.5x | | 0.18(12)+0.03x=0.09(24+x) | | 3(4x-3)-19=8x-4 | | -(x+3)+(2x-1)=(1+4x)+(3+x) | | -6+2x=20 | | a^2+1=0 | | -20+7x=-118 | | -9-2x=9 | | 4(5x-10)=20(x-20) | | 44+9x=125 |

Equations solver categories